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ABSTRACT
Recently, Deep learning methods have dominated many filed-
s thanks to its powerful discriminative feature learning abili-
ty. While for hyperspectral images (HSI) analysis, these deep
neural networks methods suffer from overfitting as the num-
ber of labeled training samples are limited. Thus more effi-
cient neural network architecture should be designed to im-
prove the performance of HSI classification task. In this pa-
per, a novel attention inception module is introduced to ex-
tract features dynamically from multi-resolution convolution-
al flters. The AI-NET constructed by stacking the proposed
attention inception module can adaptively adjust the network
architecture by dynamically routing between the attention in-
ception modules. By exploiting different spatial size convolu-
tional filters and dynamic CNN architecture, more represen-
tative feature can be learned with limited training samples.
Extensive experimental results have shown that the proposed
method can adaptively adjust the network atchitecture and ob-
tain better classification performance.

Index Terms— Hyperspectral image classification, At-
tention model, Inception model, Dynamic routing, Deep
learning

1. INTRODUCTION

Hyperspectral imaging data contains rich spectral and spa-
tial information which are useful for a variety of earth re-
mote sensing applications. Among them, pixel-wise hyper-
spectral image classification provides the spatial distribution
of the land cover classes, and it is pivotal for the investigation
of environmental processes. While great effort has been made
for the research of classification algorithms, there still some
issues to cope with, for example, the high dimensionality of
pixels, complicated spatial distribution of different land cover
classes and the limited training samples.

As aforementioned, hyperspectral images provide richer
information by the hundreds of spetral channels. However,
when the HSI spectral bands is more than the training sam-
ples, the classification accuracy decreases dramatically with

the increase of data dimensionality, which is named Hugh-
es Phenomenon. To deal with this problem, many non-linear
methods have been proposed such as kernel support vector
machines, sparse multinomial logistic regression, neural net-
works and so forth. Although these methods can achieve bet-
ter accuracy than traditional linear mothods, there are still
limitations: (1) they mainly make use of the spectral infor-
mation of the pixel, regardless of the spatial context of the
pixel. (2) Directly using the low level spectral bands as the
feature is not discriminative enough for classification.

Considering these limitations described above, deep
learning methods are promising to alleviate them. Deep neu-
ral networks can be viewed as a strong non-linear function,
which has advantages over traditional methods for handling
the HSI data with high dimensionality. Another superiority of
deep convolution networks is that the receptive fields of CNN
models take the neighboring pixels into consideration inher-
ently. The spatial feature provides context information and
is an important clue for the hyperspectral image pixel-wise
classification.

Although deep convolutional networks take spatial con-
text into account, traditional CNN models merely exploit the
fixed convolution kernel size. However, the hyperspectral im-
age land cover class distribution is complicated, traditional
CNN with fixed kernel size is not flexible enough. Convo-
lution with different spatial context size may capture more
discriminative context feature for HSI pixel classification.

In addition to these issues above, for hyperspectral image
classification task, merely less than 10% of the samples can
be used for training. However, deep learning models usually
have huge amounts of training parameters. So if the training
samples size is too small, deep models tend to be overfitting.
Recently proposed deep network architectures like resnet [1],
and densenet[2] are very deep, even beyond one hundred lay-
ers. These networks are effective for huge datasets such as
Imagenet and coco. However, these networks are too com-
plex for HSI images. The training samples are insufficient, so
these models suffer from overfitting problem.

To address the problems depicted above, in this paper, we



design a deep attention inception CNN architecture named
AI-NET. The contributions of this work can be summarized
as follows:

(1) We introduce a novel deep attention inception module.
This module can adaptively focus on different spatial
context by using different convolution kernel size. With
respect to different datasets with unique characteristic-
s, the module can learn special attention pattern to im-
prove the classification performance.

(2) We design an effective two layer attention inception
module based deep network architecture. We address
the overfitting problem by designing samll scale (shal-
low) but large capacity (multiple convolution kernels
with attention) CNN architecture.

2. RELATED WORK

Recent machine learning methods devised for hyperspectral
image classification can be divided into two categories: tra-
ditional classification methods and deep learning based meth-
ods.

In recent years, some advanced classifier such as local
Fisher discriminant analysis [3], and kernel support vector
machines[4]. SVM is a kind of maximum margin based clas-
sifier, and has been widely applied to HSI classification task.
By using the kernel function, kernel SVM can classify the
HSI data in higher dimensionality space. Some improved
Neural networks (NN) classifiers such as applied radial ba-
sis function NN for HSI classifiation. However the limitation
of these methods is that the low level feature is not represen-
tative enough for complicated HSI images.

Recently, great progress has been made in HSI classifica-
tion owing to the deep learning methods, especially the deep
convolutional neural networks. Deep CNN is effective for
high level feature extraction and has shown its power in many
computer vision tasks like [5] and [6]. CNN is composed of
convolution, activation and pooling layers. By stacking these
layers, CNN can learn hierarchical representation of the im-
ages. Deep learning based methods, such as stacked autoen-
coders [7] and supervised deep CNN [8] are used to extract
the spectral features of HSI, and obtained promising perfor-
mance. Principal component analysis (PCA) is exploited as
the preprocess of the deep CNN in work [9].

3. OUR METHOD

The whole network is illustrated by Fig. 1. The main process
of the system is as follows. In the training stage, we extract
7× 7 image patches at every HSI pixel as the input images.
Then the image patches are fed into a convolution layer with
3× 3 kernel size and a max pooling layer. Next, two atten-
tion inception modules with residual connection are exploited

to learn the dynamic spatial context features. All convolu-
tion layers are activated by Relu layer. Finally, we use fully
connected layer and softmax layer as the classifier for predict-
ing pixel-wise class. The proposed framework can be easily
trained in an end-to-end manner.

3.1. Multiple kernel Inception Module

Inception module is proposed to learn the optimal sparse
structure representation. As illustrated by Fig. 1, the in-
ception mudule is composed of three branch convolution
operation with three different branches: (1). one 1× 1 ker-
nel; (2). one 3× 3 kernel; (3). two 3× 3 kernels. Among
them, the branch with two 3× 3 kernels is the approximation
of one 5× 5 kernel with less parameters and computation
cost. If we denote the k-th feature map as hk, the three
branch convolution outputs are hk

1×1, hk
3×3 and hk

5×5 respec-
tively. The filters w1×1, w3×3 are corresponding to 1× 1,
3× 3 convolution kernel respectively. ∗ denotes the convo-
lution operation, and bkn represents the bias corresponding
to the weights. Then the operation of the multiple kernel
convolution can be formulated as follows:

hk
1×1 = relu(w1×1 ∗ x+ bk1×1), (1)

hk
3×3 = relu(w3×3 ∗ x+ bk3×3), (2)

hk
5×5 = relu(w3×3 ∗ (relu(w3×3 ∗x+ bk3×3))+ bk3×3). (3)

The Multi-kernel convolution network takes advantage of
multiple spatial context to extract features with different char-
acteristics. The three branch outputs hk

1×1, hk
3×3 and hk

5×5 are
the inputs of the next attention mechanism.

3.2. Attention Inception Model

The attention inception model dynamically focus on the mul-
tiple spatial kernel convolution outputs by attention vectors.
Traditional inception module concatenates different branch
outputs together as the next layer inputs. In our proposed
method, we use attention mechanism to adaptively encode d-
ifferent spatial size information to learn more representative
features. We denote the attention vector as [w1, w2, w3], and
the output of attention inception model of the k-th feature map
is defined as hk

a

hk
a = w1 ∗ hk

1×1 + w2 ∗ hk
3×3 + w3 ∗ hk

5×5. (4)

Then the attended feature maps are fed into the next atten-
tion inception module, and the residual connection is used to
make the loss back propagation process more effectively.

3.3. AI-NET Architecture

The first attention inception module output hk
a is taken as the

input of the second attention inception module. After the
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Fig. 1. The whole detection framework.

Table 1. AI-NET NETWORK ARCHITECTURE
Type Kernel size Feature maps

Convolution 3x3 64
Max pool 2x2 64

Inception1/Convolution1 1x1 128
Inception1/Convolution2 3x3 128

Inception1/Convolution3 1 3x3 128
Inception1/Convolution3 2 3x3 128
Inception2/Convolution1 1x1 128
Inception2/Convolution2 3x3 128

Inception2/Convolution3 1 3x3 128
Inception2/Convolution3 2 3x3 128

Max pool 2x2 128
Fully connected - -

same process with the first module, the output of the second
attention inception module is denoted as h2ka. Then the resid-
ual connection is exploited as follows:

h3ka = hk
a + h2ka, (5)

Then h3ka is fed to a fully connected layer and the predic-
tion class is output by softmax layer. The full architecture is
shown in table 1.

4. EXPERIMENTS

To evaluate the proposed AI-NET, we trained and tested it
on two public HSI classification datasets: the Indian Pines
dataset and Salinas dataset. There are 16 land cover classes in
Indian Pines dataset, and 16 land cover classer of urban area
in University of Pavia dataset. For conveniently comparing
our method with other published methods, in the IN dataset,
we randomly select 200 samples of each annotated class for
training. For the UP dataset, we also obrtain 200 randomly
chosen annotated data for training. We set the patch size to
7× 7 in both dataset. Stochastic Gradient Descent (SGD) is
used to train the model with the following parameters: The
learning rate is set to 0.001, and the weight decay is 0.0004.
The batch size we use in our experiment is 100. Batch nor-
malization is not used in our designed network.

We compare our method with traditional advanced ma-
chine learning methods like radial basis function kernel SVM

Indian Pines ground truth Indian Pines result of AI-NET

Fig. 2. The classification map of our method and the ground
truth label map.

Table 2. TESTING CLASSIFICATION RESULTS WITH
200 TRAINING SAMPLES

Salinas dataset IN dataset
Methods OA(%) Kappa OA(%) Kappa

RBF-SVM 83.09 81.07 58.01 52.07
EMP-SVM [10] 85.90 84.02 69.34 64.56
EMP-CNN [11] 87.04 85.43 86.48 84.23
Gabor-CNN [12] 92.02 91.07 89.02 86.07

AI-NET(ours) 94.64 92.73 93.07 91.75

(F-SVM), extended morphological profiles SVM (EMP-
SVM) [10], EMP-CNN [11] and Gabor-CNN [12]. All
experiments are run 10 times with the same training pa-
rameters and random initial weights. Overall accuracy (OA)
and Kappa are used as the evaluation measurements for all
the compared methods.

The experimental results of the IN dataset are shown in
Table. 2. From the result we can see that our designed net-
work with attention inception module is effective for HSI da-
ta classification. From the results, we can see that traditional
methods like the modified SVM achieves poor performance
with only 200 samples. CNN based methods are more ef-
fective for its more dicriminative feature learning power, and
improve the accuracy by almost 20%. The proposed method
achieves the best classification performance, which indicates
the active effect of the proposed multi-spatial context model.



Salinas ground truth Salinas result of AI-NET

Fig. 3. The classification map of our method and the ground
truth label map.

The qualitative land cover classification result on IN dataset
is shown in Fig.2.

From Table. 2, we can see the comparison results of the
Salinas dataset. From the result we can see that traditional
modified methods like SVM can achieve about 84% accura-
cy. The land cover class ditribution of Salinas dataset is more
pure and simple, so traditional mathods as well as the CN-
N based methods can obtain better performance than the IN
dataset. In this dataset, our AI-NET also achieves best accu-
racy, which shows that the adaptive attention inception net-
work is robust to different land cover class distribution. The
qualitative land cover classification result on Salinas dataset
is shown in Fig.3.
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